Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Front Physiol ; 14: 1268766, 2023.
Article En | MEDLINE | ID: mdl-37881694

Research institutes and universities have strengthened the development of biomedicine outreach activities, constituing a non-formal education system of science literacy, although with little commitment from undergraduate students. However, as a Service-Learning methodology, these outreach activities could work as a tool for the acquisition of skills by students of Health Science Degrees. Described here is the development of the workshop entitled "Exploring the human body" at the Biodonostia Health Research Institute and the pilot experience of its implementation as a Service-Learning activity at the University of Málaga. Firstly, 359 secondary education students were mentored by Ph.D. students through a 5-station workshop with experiments and activities related to the physiology of the human body. Then, 301 undergraduate students of Medicine and Nursing Degrees advised 965 secondary education students. Both groups of students assessed the workshop via questionnaires and a debriefing. The data showed an overall score of 4.6 out of 5 for the workshop. Undergraduate students reported a positive impact on their academic background (4.8 out of 5), mainly due to the improvement of oral communication skills (34%). Therefore, this methodology could be a valid and applicable tool to develop the cross-disciplinary competences of undergraduate students.

2.
Orphanet J Rare Dis ; 18(1): 315, 2023 10 10.
Article En | MEDLINE | ID: mdl-37817200

BACKGROUND: Limb-girdle muscular dystrophy R1 calpain 3-related (LGMDR1) is an autosomal recessive muscular dystrophy due to mutations in the CAPN3 gene. While the pathophysiology of this disease has not been clearly established yet, Wnt and mTOR signaling pathways impairment in LGMDR1 muscles has been reported. RESULTS: A reduction in Akt phosphorylation ratio and upregulated expression of proteins implicated in glycolysis (HK-II) and in fructose and lactate transport (GLUT5 and MCT1) in LGMDR1 muscle was observed. In vitro analysis to establish mitochondrial and glycolytic functions of primary cultures were performed, however, no differences between control and patients were observed. Additionally, gene expression analysis showed a lack of correlation between primary myoblasts/myotubes and LGMDR1 muscle while skin fibroblasts and CD56- cells showed a slightly better correlation with muscle. FRZB gene was upregulated in all the analyzed cell types (except in myoblasts). CONCLUSIONS: Proteins implicated in metabolism are deregulated in LGMDR1 patients' muscle. Obtained results evidence the limited usefulness of primary myoblasts/myotubes for LGMDR1 gene expression and metabolic studies. However, since FRZB is the only gene that showed upregulation in all the analyzed cell types it is suggested its role as a key regulator of the pathophysiology of the LGMDR1 muscle fiber. The Wnt signaling pathway inactivation, secondary to FRZB upregulation, and GLUT5 overexpression may participate in the impaired adipogenesis in LGMD1R patients.


Muscle Proteins , Muscular Dystrophies, Limb-Girdle , Humans , Muscle Proteins/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/metabolism , Muscle Fibers, Skeletal/metabolism , Wnt Signaling Pathway , Cell Culture Techniques , Muscle, Skeletal/metabolism
3.
Cells ; 11(19)2022 09 27.
Article En | MEDLINE | ID: mdl-36230978

Myotonic dystrophy type 1 (DM1) is an autosomal dominant disease caused by a CTG repeat expansion in the 3' untranslated region of the dystrophia myotonica protein kinase gene. AKT dephosphorylation and autophagy are associated with DM1. Autophagy has been widely studied in DM1, although the endocytic pathway has not. AKT has a critical role in endocytosis, and its phosphorylation is mediated by the activation of tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR). EGF-activated EGFR triggers the internalization and degradation of ligand-receptor complexes that serve as a PI3K/AKT signaling platform. Here, we used primary fibroblasts from healthy subjects and DM1 patients. DM1-derived fibroblasts showed increased autophagy flux, with enlarged endosomes and lysosomes. Thereafter, cells were stimulated with a high concentration of EGF to promote EGFR internalization and degradation. Interestingly, EGF binding to EGFR was reduced in DM1 cells and EGFR internalization was also slowed during the early steps of endocytosis. However, EGF-activated EGFR enhanced AKT and ERK1/2 phosphorylation levels in the DM1-derived fibroblasts. Therefore, there was a delay in EGF-stimulated EGFR endocytosis in DM1 cells; this alteration might be due to the decrease in the binding of EGF to EGFR, and not to a decrease in AKT phosphorylation.


Epidermal Growth Factor , Myotonic Dystrophy , 3' Untranslated Regions , Epidermal Growth Factor/genetics , Epidermal Growth Factor/pharmacology , ErbB Receptors/metabolism , Humans , Ligands , Myotonic Dystrophy/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism
4.
Cartilage ; 13(4): 105-118, 2022 12.
Article En | MEDLINE | ID: mdl-36250422

OBJECTIVE: The surgical management of nasal septal defects due to perforations, malformations, congenital cartilage absence, traumatic defects, or tumors would benefit from availability of optimally matured septal cartilage substitutes. Here, we aimed to improve in vitro maturation of 3-dimensional (3D)-printed, cell-laden polycaprolactone (PCL)-based scaffolds and test their in vivo performance in a rabbit auricular cartilage model. DESIGN: Rabbit auricular chondrocytes were isolated, cultured, and seeded on 3D-printed PCL scaffolds. The scaffolds were cultured for 21 days in vitro under standard culture media and normoxia or in prochondrogenic and hypoxia conditions, respectively. Cell-laden scaffolds (as well as acellular controls) were implanted into perichondrium pockets of New Zealand white rabbit ears (N = 5 per group) and followed up for 12 weeks. At study end point, the tissue-engineered scaffolds were extracted and tested by histological, immunohistochemical, mechanical, and biochemical assays. RESULTS: Scaffolds previously matured in vitro under prochondrogenic hypoxic conditions showed superior mechanical properties as well as improved patterns of cartilage matrix deposition, chondrogenic gene expression (COL1A1, COL2A1, ACAN, SOX9, COL10A1), and proteoglycan production in vivo, compared with scaffolds cultured in standard conditions. CONCLUSIONS: In vitro maturation of engineered cartilage scaffolds under prochondrogenic conditions that better mimic the in vivo environment may be beneficial to improve functional properties of the engineered grafts. The proposed maturation strategy may also be of use for other tissue-engineered constructs and may ultimately impact survival and integration of the grafts in the damaged tissue microenvironment.


Cartilage , Chondrocytes , Rabbits , Animals , Chondrocytes/metabolism , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Chondrogenesis
5.
iScience ; 25(6): 104476, 2022 Jun 17.
Article En | MEDLINE | ID: mdl-35721463

Mutations in LRRK2 increase its kinase activity and cause Parkinson's disease. LRRK2 phosphorylates a subset of Rab proteins which allows for their binding to RILPL1. The phospho-Rab/RILPL1 interaction causes deficits in ciliogenesis and interferes with the cohesion of duplicated centrosomes. We show here that centrosomal deficits mediated by pathogenic LRRK2 can also be observed in patient-derived iPS cells, and we have used transiently transfected cell lines to identify the underlying mechanism. The LRRK2-mediated centrosomal cohesion deficits are dependent on both the GTP conformation and phosphorylation status of the Rab proteins. Pathogenic LRRK2 does not displace proteinaceous linker proteins which hold duplicated centrosomes together, but causes the centrosomal displacement of CDK5RAP2, a protein critical for centrosome cohesion. The LRRK2-mediated centrosomal displacement of CDK5RAP2 requires RILPL1 and phospho-Rab proteins, which stably associate with centrosomes. These data provide fundamental information as to how pathogenic LRRK2 alters the normal physiology of a cell.

6.
Brain ; 145(6): 2092-2107, 2022 06 30.
Article En | MEDLINE | ID: mdl-35245368

Synaptic impairment might precede neuronal degeneration in Parkinson's disease. However, the intimate mechanisms altering synaptic function by the accumulation of presynaptic α-synuclein in striatal dopaminergic terminals before dopaminergic death occurs, have not been elucidated. Our aim is to unravel the sequence of synaptic functional and structural changes preceding symptomatic dopaminergic cell death. As such, we evaluated the temporal sequence of functional and structural changes at striatal synapses before parkinsonian motor features appear in a rat model of progressive dopaminergic death induced by overexpression of the human mutated A53T α-synuclein in the substantia nigra pars compacta, a protein transported to these synapses. Sequential window acquisition of all theoretical mass spectra proteomics identified deregulated proteins involved first in energy metabolism and later, in vesicle cycling and autophagy. After protein deregulation and when α-synuclein accumulated at striatal synapses, alterations to mitochondrial bioenergetics were observed using a Seahorse XF96 analyser. Sustained dysfunctional mitochondrial bioenergetics was followed by a decrease in the number of dopaminergic terminals, morphological and ultrastructural alterations, and an abnormal accumulation of autophagic/endocytic vesicles inside the remaining dopaminergic fibres was evident by electron microscopy. The total mitochondrial population remained unchanged whereas the number of ultrastructurally damaged mitochondria increases as the pathological process evolved. We also observed ultrastructural signs of plasticity within glutamatergic synapses before the expression of motor abnormalities, such as a reduction in axospinous synapses and an increase in perforated postsynaptic densities. Overall, we found that a synaptic energetic failure and accumulation of dysfunctional organelles occur sequentially at the dopaminergic terminals as the earliest events preceding structural changes and cell death. We also identify key proteins involved in these earliest functional abnormalities that may be modulated and serve as therapeutic targets to counterbalance the degeneration of dopaminergic cells to delay or prevent the development of Parkinson's disease.


Parkinson Disease , Parkinsonian Disorders , Animals , Autophagy , Corpus Striatum/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Energy Metabolism , Parkinsonian Disorders/metabolism , Rats , alpha-Synuclein/metabolism
7.
Cell Biol Toxicol ; 38(5): 889-911, 2022 10.
Article En | MEDLINE | ID: mdl-34060004

Autophagy is a mechanism responsible for the degradation of cellular components to maintain their homeostasis. However, autophagy is commonly altered and compromised in several diseases, including neurodegenerative disorders. Parkinson's disease (PD) can be considered a multifactorial disease because environmental factors, genetic factors, and aging are involved. Several genes are involved in PD pathology, among which the LRRK2 gene and its mutations, inherited in an autosomal dominant manner, are responsible for most genetic PD cases. The R1441G LRRK2 mutation is, after G2019S, the most important in PD pathogenesis. Our results demonstrate a relationship between the R1441G LRRK2 mutation and a mechanistic dysregulation of autophagy that compromises cell viability. This altered autophagy mechanism is associated with organellar stress including mitochondrial (which induces mitophagy) and endoplasmic reticulum (ER) stress, consistent with the fact that patients with this mutation are more vulnerable to toxins related to PD, such as MPP+.


Mitophagy , Parkinson Disease , Endoplasmic Reticulum Stress/genetics , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Macroautophagy , Mitophagy/genetics , Mutation/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Serine-Threonine Kinases/genetics
8.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article En | MEDLINE | ID: mdl-34298987

Limb-girdle muscular dystrophy R1 calpain 3-related (LGMDR1) is an autosomal recessive muscular dystrophy produced by mutations in the CAPN3 gene. It is a rare disease and there is no cure or treatment for the disease while the pathophysiological mechanism by which the absence of calpain 3 provokes the dystrophy in muscles is not clear. However, key proteins implicated in Wnt and mTOR signaling pathways, which regulate muscle homeostasis, showed a considerable reduction in their expression and in their phosphorylation in LGMDR1 patients' muscles. Finally, the administration of tideglusib and VP0.7, ATP non-competitive inhibitors of glycogen synthase kinase 3ß (GSK-3ß), restore the expression and phosphorylation of these proteins in LGMDR1 cells, opening the possibility of their use as therapeutic options.


Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Muscular Dystrophies, Limb-Girdle/drug therapy , Nerve Tissue Proteins/antagonists & inhibitors , Signal Transduction/drug effects , Adenosine Triphosphate/metabolism , Allosteric Site/drug effects , CD56 Antigen/analysis , Calpain/deficiency , Calpain/genetics , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Glycogen Synthase Kinase 3 beta/chemistry , Humans , Hydrazines/pharmacology , Hydrazines/therapeutic use , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Proteins/deficiency , Muscle Proteins/genetics , Muscular Dystrophies, Limb-Girdle/enzymology , Nerve Tissue Proteins/chemistry , Phosphorylation , Protein Processing, Post-Translational/drug effects , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/physiology , Quinolones/pharmacology , Quinolones/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/physiology , Thiadiazoles/pharmacology , Thiadiazoles/therapeutic use , Wnt Signaling Pathway/drug effects
9.
Tissue Eng Regen Med ; 18(3): 343-353, 2021 06.
Article En | MEDLINE | ID: mdl-33864626

BACKGROUND: In recent years, three-dimensional (3D)-printing of tissue-engineered cartilaginous scaffolds is intended to close the surgical gap and provide bio-printed tissue designed to fit the specific geometric and functional requirements of each cartilage defect, avoiding donor site morbidity and offering a personalizing therapy. METHODS: To investigate the role of 3D-bioprinting scaffolding for nasal cartilage defects repair a systematic review of the electronic databases for 3D-Bioprinting articles pertaining to nasal cartilage bio-modelling was performed. The primary focus was to investigate cellular source, type of scaffold utilization, biochemical evaluation, histological analysis, in-vitro study, in-vivo study, animal model used, length of research, and placement of experimental construct and translational investigation. RESULTS: From 1011 publications, 16 studies were kept for analysis. About cellular sources described, most studies used primary chondrocyte cultures. The cartilage used for cell isolation was mostly nasal septum. The most common biomaterial used for scaffold creation was polycaprolactone alone or in combination. About mechanical evaluation, we found a high heterogeneity, making it difficult to extract any solid conclusion. Regarding biological and histological characteristics of each scaffold, we found that the expression of collagen type I, collagen Type II and other ECM components were the most common patterns evaluated through immunohistochemistry on in-vitro and in-vivo studies. Only two studies made an orthotopic placement of the scaffolds. However, in none of the studies analyzed, the scaffold was placed in a subperichondrial pocket to rigorously simulate the cartilage environment. In contrast, scaffolds were implanted in a subcutaneous plane in almost all of the studies included. CONCLUSION: The role of 3D-bioprinting scaffolding for nasal cartilage defects repair is growing field. Despite the amount of information collected in the last years and the first surgical applications described recently in humans. Further investigations are needed due to the heterogeneity on mechanical evaluation parameters, the high level of heterotopic scaffold implantation and the need for quantitative histological data.


Bioprinting , Animals , Chondrocytes , Humans , Nasal Cartilages/surgery , Printing, Three-Dimensional , Tissue Scaffolds
10.
Aging (Albany NY) ; 12(17): 16690-16708, 2020 Sep 09.
Article En | MEDLINE | ID: mdl-32903216

The research of new biomarkers for Parkinson's disease is essential for accurate and precocious diagnosis, as well as for the discovery of new potential disease mechanisms and drug targets. The main objective of this work was to identify metabolic changes that might serve as biomarkers for the diagnosis of this neurodegenerative disorder. For this, we profiled the plasma metabolome from mice with neurotoxin-induced Parkinson's disease as well as from patients with familial or sporadic Parkinson's disease. By using mass spectrometry technology, we analyzed the complete metabolome from healthy volunteers compared to patients with idiopathic or familial (carrying the G2019S or R1441G mutations in the LRRK2 gene) Parkinson's disease, as well as, from mice treated with 6-hydroxydopamine to induce Parkinson disease. Both human and murine Parkinson was accompanied by an increase in plasma levels of unconjugated bile acids (cholic acid, deoxycholic acid and lithocholic acid) and purine base intermediary metabolites, in particular hypoxanthine. The comprehensive metabolomic analysis of plasma from Parkinsonian patients underscores the importance of bile acids and purine metabolism in the pathophysiology of this disease. Therefore, plasma measurements of certain metabolites related to these pathways might contribute to the diagnosis of Parkinson's Disease.

11.
Antioxidants (Basel) ; 9(6)2020 Jun 15.
Article En | MEDLINE | ID: mdl-32549347

Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. This neuronal loss, inherent to age, is related to exposure to environmental toxins and/or a genetic predisposition. PD-induced cell death has been studied thoroughly, but its characterization remains elusive. To date, several types of cell death, including apoptosis, autophagy-induced cell death, and necrosis, have been implicated in PD progression. In this study, we evaluated necroptosis, which is a programmed type of necrosis, in primary fibroblasts from PD patients with and without the G2019S leucine-rich repeat kinase 2 (LRRK2) mutation and in rotenone-treated cells (SH-SY5Y and fibroblasts). The results showed that programmed necrosis was not activated in the cells of PD patients, but it was activated in cells exposed to rotenone. Necrostatin-1 (Nec-1), an inhibitor of the necroptosis pathway, prevented rotenone-induced necroptosis in PD models. However, Nec-1 affected mitochondrial morphology and failed to protect mitochondria against rotenone toxicity. Therefore, despite the inhibition of rotenone-mediated necroptosis, PD models were susceptible to the effects of both Nec-1 and rotenone.

12.
Hum Mol Genet ; 28(21): 3552-3568, 2019 11 01.
Article En | MEDLINE | ID: mdl-31428781

Mutations in the LRRK2 kinase are the most common cause of familial Parkinson's disease, and variants increase risk for the sporadic form of the disease. LRRK2 phosphorylates multiple RAB GTPases including RAB8A and RAB10. Phosphorylated RAB10 is recruited to centrosome-localized RILPL1, which may interfere with ciliogenesis in a disease-relevant context. Our previous studies indicate that the centrosomal accumulation of phosphorylated RAB8A causes centrosomal cohesion deficits in dividing cells, including in peripheral patient-derived cells. Here, we show that both RAB8 and RAB10 contribute to the centrosomal cohesion deficits. Pathogenic LRRK2 causes the centrosomal accumulation not only of phosho-RAB8 but also of phospho-RAB10, and the effects on centrosomal cohesion are dependent on RAB8, RAB10 and RILPL1. Conversely, the pathogenic LRRK2-mediated ciliogenesis defects correlate with the centrosomal accumulation of both phospho-RAB8 and phospho-RAB10. LRRK2-mediated centrosomal cohesion and ciliogenesis alterations are observed in patient-derived peripheral cells, as well as in primary astrocytes from mutant LRRK2 mice, and are reverted upon LRRK2 kinase inhibition. These data suggest that the LRRK2-mediated centrosomal cohesion and ciliogenesis defects are distinct cellular readouts of the same underlying phospho-RAB8/RAB10/RILPL1 nexus and highlight the possibility that either centrosomal cohesion and/or ciliogenesis alterations may serve as cellular biomarkers for LRRK2-related PD.


Adaptor Proteins, Signal Transducing/metabolism , Centrosome/metabolism , Ciliopathies/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , rab GTP-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Ciliopathies/enzymology , Ciliopathies/genetics , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Phosphorylation , rab GTP-Binding Proteins/genetics
13.
Mol Neurobiol ; 56(4): 2466-2481, 2019 Apr.
Article En | MEDLINE | ID: mdl-30032424

Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder. While most PD cases are idiopathic, the known genetic causes of PD are useful to understand common disease mechanisms. Recent data suggests that autophagy is regulated by protein acetylation mediated by histone acetyltransferase (HAT) and histone deacetylase (HDAC) activities. The changes in histone acetylation reported to be involved in PD pathogenesis have prompted this investigation of protein acetylation and HAT and HDAC activities in both idiopathic PD and G2019S leucine-rich repeat kinase 2 (LRRK2) cell cultures. Fibroblasts from PD patients (with or without the G2019S LRRK2 mutation) and control subjects were used to assess the different phenotypes between idiopathic and genetic PD. G2019S LRRK2 mutation displays increased mitophagy due to the activation of class III HDACs whereas idiopathic PD exhibits downregulation of clearance of defective mitochondria. This reduction of mitophagy is accompanied by more reactive oxygen species (ROS). In parallel, the acetylation protein levels of idiopathic and genetic individuals are different due to an upregulation in class I and II HDACs. Despite this upregulation, the total HDAC activity is decreased in idiopathic PD and the total HAT activity does not significantly vary. Mitophagy upregulation is beneficial for reducing the ROS-induced harm in genetic PD. The defective mitophagy in idiopathic PD is inherent to the decrease in class III HDACs. Thus, there is an imbalance between total HATs and HDACs activities in idiopathic PD, which increases cell death. The inhibition of HATs in idiopathic PD cells displays a cytoprotective effect.


Fibroblasts/metabolism , Fibroblasts/pathology , Mitophagy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Proteins/metabolism , Acetylation/drug effects , Anacardic Acids/pharmacology , Cell Death/drug effects , Fibroblasts/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Humans , Lysine/metabolism , Mitophagy/drug effects , Models, Biological , Neuroprotective Agents/pharmacology , Sirtuins/metabolism
14.
Mol Nutr Food Res ; 62(15): e1800142, 2018 Aug.
Article En | MEDLINE | ID: mdl-29851217

SCOPE: The potential effects of yerba mate (YM) on mitochondrial biogenesis and thermogenesis are evaluated. METHODS AND RESULTS: The in vitro effects of YM on mitochondrial respiration are assessed in C2C12 cells. The expression of genes related to mitochondrial biogenesis and thermogenesis are analyzed by quantitative PCR. The in vivo experiments are performed on mice fed a high-fat diet (HFD) and treated with YM extract. Indirect calorimetry was performed, and the expression of genes and proteins related to mitochondrial biogenesis, thermogenesis, and de novo lipogenesis is determined by quantitative PCR and western blot. Our in vitro data indicate that YM increases mtDNA copy number as well as mitochondrial spare respiratory capacity and coupling efficiency. The gene expression profile reinforces this evidence, indicating a modulation of genes downstream of Ampk. In vivo, it is found that YM partially prevents diet-induced obesity by increasing energy expenditure and enhancing mitochondrial biogenesis via the AMPK/SIRT1/PGC1α pathway. CONCLUSIONS: YM stimulates mitochondriogenesis and Ucp expression, leading to an increase in the spare respiratory capacity and energy dissipation. These effects may help to better understand the potential use of YM for obesity treatment.

15.
Front Cell Neurosci ; 12: 97, 2018.
Article En | MEDLINE | ID: mdl-29719501

Parkinson's disease (PD) is a multifactorial neurodegenerative disorder. The pathogenesis of this disease is associated with gene and environmental factors. Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent genetic cause of familial and sporadic PD. Moreover, posttranslational modifications, including protein acetylation, are involved in the molecular mechanism of PD. Acetylation of lysine proteins is a dynamic process that is modulated in PD. In this descriptive study, we characterized the acetylated proteins and peptides in primary fibroblasts from idiopathic PD (IPD) and genetic PD harboring G2019S or R1441G LRRK2 mutations. Identified acetylated peptides are modulated between individuals' groups. Although acetylated nuclear proteins are the most represented in cells, they are hypoacetylated in IPD. Results display that the level of hyperacetylated and hypoacetylated peptides are, respectively, enhanced in genetic PD and in IPD cells.

16.
Mol Neurodegener ; 13(1): 3, 2018 01 23.
Article En | MEDLINE | ID: mdl-29357897

BACKGROUND: Mutations in LRRK2 are a common genetic cause of Parkinson's disease (PD). LRRK2 interacts with and phosphorylates a subset of Rab proteins including Rab8a, a protein which has been implicated in various centrosome-related events. However, the cellular consequences of such phosphorylation remain elusive. METHODS: Human neuroblastoma SH-SY5Y cells stably expressing wildtype or pathogenic LRRK2 were used to test for polarity defects in the context of centrosomal positioning. Centrosomal cohesion deficits were analyzed from transiently transfected HEK293T cells, as well as from two distinct peripheral cell types derived from LRRK2-PD patients. Kinase assays, coimmunoprecipitation and GTP binding/retention assays were used to address Rab8a phosphorylation by LRRK2 and its effects in vitro. Transient transfections and siRNA experiments were performed to probe for the implication of Rab8a and its phosphorylated form in the centrosomal deficits caused by pathogenic LRRK2. RESULTS: Here, we show that pathogenic LRRK2 causes deficits in centrosomal positioning with effects on neurite outgrowth, cell polarization and directed migration. Pathogenic LRRK2 also causes deficits in centrosome cohesion which can be detected in peripheral cells derived from LRRK2-PD patients as compared to healthy controls, and which are reversed upon LRRK2 kinase inhibition. The centrosomal cohesion and polarity deficits can be mimicked when co-expressing wildtype LRRK2 with wildtype but not phospho-deficient Rab8a. The centrosomal defects induced by pathogenic LRRK2 are associated with a kinase activity-dependent increase in the centrosomal localization of phosphorylated Rab8a, and are prominently reduced upon RNAi of Rab8a. CONCLUSIONS: Our findings reveal a new function of LRRK2 mediated by Rab8a phosphorylation and related to various centrosomal defects.


Centrosome/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , rab GTP-Binding Proteins/metabolism , Cell Line , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/pathology , Phosphorylation
17.
Expert Rev Mol Med ; 19: e2, 2017 03 16.
Article En | MEDLINE | ID: mdl-28300015

Limb-girdle muscular dystrophy type 2A (LGMD2A) is characterised by muscle wasting and progressive degeneration of proximal muscles because of mutations in the CAPN3 gene. However, the underlying pathophysiological mechanisms of muscle degeneration are still not well understood. The objective of this study was to assess the relevance of genes with differential expression in the muscle of LGMD2A patients. For this purpose, we analysed their in vitro expression in primary cultures of human myoblasts and myotubes. Abnormal fusion was observed in the myotubes of these patients, which may be explained by the lack of physiological replacement of integrin ß1D. Owing to this observation, we focused on deregulated genes coding proteins that directly interact with integrin, ITGB1BP2 and CD9, as well as FRZB gene, because of its in vitro upregulation in myotubes. Silencing studies established that these genes are closely regulated, CD9 and FRZB being positive regulators of the expression of ITGB1BP2, and in turn, this gene being a negative regulator of the expression of FRZB. Interestingly, we observed that FRZB regulates integrin ß1D expression, its silencing increasing integrin ß1D expression to levels similar to those in controls. Finally, the administration of LiCl, an enhancer of the Wnt-signalling pathway showed similar experimentally beneficial effects, suggesting FRZB silencing or LiCl administration as potential therapeutic targets, though further studies are required.


Cytoskeletal Proteins/genetics , Glycoproteins/genetics , Integrins/metabolism , Muscle Proteins/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/metabolism , Myoblasts/metabolism , Signal Transduction , Adolescent , Adult , Aged , Animals , Biomarkers , Cell Line , Child , Extracellular Matrix Proteins/metabolism , Female , Gene Expression , Humans , Intracellular Signaling Peptides and Proteins , Lithium Chloride/pharmacology , Male , Mice , Middle Aged , Models, Biological , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/drug therapy , Muscular Dystrophies, Limb-Girdle/pathology , Mutation , Myoblasts/pathology , Phosphorylation , Protein Isoforms , Signal Transduction/drug effects , Wnt Signaling Pathway , Young Adult
18.
Stem Cell Reports ; 7(3): 411-424, 2016 09 13.
Article En | MEDLINE | ID: mdl-27594590

The dermal Panniculus carnosus (PC) muscle is important for wound contraction in lower mammals and represents an interesting model of muscle regeneration due to its high cell turnover. The resident satellite cells (the bona fide muscle stem cells) remain poorly characterized. Here we analyzed PC satellite cells with regard to developmental origin and purported function. Lineage tracing shows that they originate in Myf5(+), Pax3/Pax7(+) cell populations. Skin and muscle wounding increased PC myofiber turnover, with the satellite cell progeny being involved in muscle regeneration but with no detectable contribution to the wound-bed myofibroblasts. Since hematopoietic stem cells fuse to PC myofibers in the absence of injury, we also studied the contribution of bone marrow-derived cells to the PC satellite cell compartment, demonstrating that cells of donor origin are capable of repopulating the PC muscle stem cell niche after irradiation and bone marrow transplantation but may not fully acquire the relevant myogenic commitment.


Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Animals , Biomarkers , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Culture Techniques , Cell Differentiation , Cell Lineage , Cell Proliferation , Gene Expression Regulation, Developmental , Mice , Mice, Transgenic , Muscle Development , Muscle, Skeletal/physiology , PAX3 Transcription Factor/genetics , PAX7 Transcription Factor/genetics , Phenotype , Regeneration , Satellite Cells, Skeletal Muscle/transplantation
19.
Front Aging Neurosci ; 7: 125, 2015.
Article En | MEDLINE | ID: mdl-26217220

Myotonic dystrophy type 1 (DM1 or Steinert's disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age-dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3' untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9 (CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA-binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular degeneration seen in DM patients, highlighting the similarities found with muscle aging.

...